Automatic Detection System of Deteriorated PV Modules Using Drone with Thermal Camera

Author:

Henry Chris,Poudel Sahadev,Lee Sang-WoongORCID,Jeong Heon

Abstract

In the last few decades, photovoltaic (PV) power station installations have surged across the globe. The output efficiency of these stations deteriorates with the passage of time due to multiple factors such as hotspots, shaded cell or module, short-circuited bypass diodes, etc. Traditionally, technicians inspect each solar panel in a PV power station using infrared thermography to ensure consistent output efficiency. With the advancement of drone technology, researchers have proposed to use drones equipped with thermal cameras for PV power station monitoring. However, most of these drone-based approaches require technicians to manually control the drone which in itself is a cumbersome task in the case of large PV power stations. To tackle this issue, this study presents an autonomous drone-based solution. The drone is mounted with both RGB (Red, Green, Blue) and thermal cameras. The proposed system can automatically detect and estimate the exact location of faulty PV modules among hundreds or thousands of PV modules in the power station. In addition, we propose an automatic drone flight path planning algorithm which eliminates the requirement of manual drone control. The system also utilizes an image processing algorithm to process RGB and thermal images for fault detection. The system was evaluated on a 1-MW solar power plant located in Suncheon, South Korea. The experimental results demonstrate the effectiveness of our solution.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPF-Net: Solar panel fault detection using U-Net based deep learning image classification;Energy Reports;2024-12

2. Multi-view VR imaging for enhanced analysis of dust accumulation on solar panels;Solar Energy;2024-09

3. CNN-based automatic detection of photovoltaic solar module anomalies in infrared images: a comparative study;Neural Computing and Applications;2024-08-11

4. Methods for Monitoring the Photovoltaic Panel: A Review;2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics);2024-07-15

5. Impedance Spectroscopy as On-Field Monitoring Technique for PV Modules;2024 19th Conference on Ph.D Research in Microelectronics and Electronics (PRIME);2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3