Study on Heat Transfer Performance and Anti-Fouling Mechanism of Ternary Ni-W-P Coating

Author:

Ren LuORCID,Cheng Yanhai,Yang Jinyong,Wang Qingguo

Abstract

Since the formation of fouling reduces heat transfer efficiency and causes energy loss, anti-fouling is desirable and may be achieved by coating. In this work, a nickel-tungsten-phosphorus (Ni-W-P) coating was prepared on the mild steel (1015) substrate using electroless plating by varying sodium tungstate concentration to improve its anti-fouling property. Surface morphology, microstructure, fouling behavior, and heat transfer performance of coatings were further reported. Also, the reaction path, transition state, and energy gradient change of calcite, aragonite, and vaterite were also calculated. During the deposition process, as the W and P elements were solids dissolved in the Ni crystal cell, the content of Ni element was obviously higher than that of the other two elements. Globular morphology was evenly covered on the surface. Consequently, the thermal conductivity of ternary Ni-W-P coating decreases from 8.48 W/m·K to 8.19 W/m·K with the increase of W content. Additionally, it goes up to 8.93 W/m·K with the increase of heat source temperature 343 K. Oxidation products are always accompanied by deposits of calcite-phase CaCO3 fouling. Due to the low surface energy of Ni-W-P coating, Ca2+ and [CO3]2− are prone to cross the transition state with a low energy barrier of 0.10 eV, resulting in the more formation of aragonite-phase CaCO3 fouling on ternary Ni-W-P coating. Nevertheless, because of the interaction of high surface energy and oxidation products on the bare matrix or Ni-W-P coating with superior W content, free Ca2+ and [CO3]2− can be easy to nucleate into calcite. As time goes on, the heat transfer efficiency of material with Ni-W-P coating is superior to the bare surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3