A Semantic Focused Web Crawler Based on a Knowledge Representation Schema

Author:

Hernandez Julio,Marin-Castro Heidy M.ORCID,Morales-Sandoval Miguel

Abstract

The Web has become the main source of information in the digital world, expanding to heterogeneous domains and continuously growing. By means of a search engine, users can systematically search over the web for particular information based on a text query, on the basis of a domain-unaware web search tool that maintains real-time information. One type of web search tool is the semantic focused web crawler (SFWC); it exploits the semantics of the Web based on some ontology heuristics to determine which web pages belong to the domain defined by the query. An SFWC is highly dependent on the ontological resource, which is created by domain human experts. This work presents a novel SFWC based on a generic knowledge representation schema to model the crawler’s domain, thus reducing the complexity and cost of constructing a more formal representation as the case when using ontologies. Furthermore, a similarity measure based on the combination of the inverse document frequency (IDF) metric, standard deviation, and the arithmetic mean is proposed for the SFWC. This measure filters web page contents in accordance with the domain of interest during the crawling task. A set of experiments were run over the domains of computer science, politics, and diabetes to validate and evaluate the proposed novel crawler. The quantitative (harvest ratio) and qualitative (Fleiss’ kappa) evaluations demonstrate the suitability of the proposed SFWC to crawl the Web using a knowledge representation schema instead of a domain ontology.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly supervised learning for an effective focused web crawler;Engineering Applications of Artificial Intelligence;2024-06

2. A Study on Design, Development and Deployment of Web Crawler Algorithms and Their Metrics;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

3. Research on the weak demand signal identification model of innovative product based on domain ontology construction;Kybernetes;2023-09-18

4. Seed URL Selection and Performance Analysis in Web Crawlers: A Comprehensive Review;Düzce Üniversitesi Bilim ve Teknoloji Dergisi;2023-07-31

5. Towards a Search and Navigation Platform for Making Library Websites Accessible to Blind and Visually Impaired People;Software Engineering Research in System Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3