Development and Characterization of a DC-Driven Thermal Oscillator Using Acrylate-Based Composites

Author:

Xu MingxinORCID,Yeh Chao-Chi,Chen Syuan-Wen,Yang Yao-Joe

Abstract

This paper presents the design, fabrication, and characterization of a thermal oscillator driven by fixed DC voltages. The proposed device consists of a miniaturized ultra-sensitive temperature sensor and a microheater. The temperature sensor was fabricated by depositing acrylate-based temperature sensing material with a positive temperature coefficient (PTC) effect on an interdigital electrode pair, and this was the key component that enabled oscillations by periodically switching the microheater on and off. The acrylate-based material, which was prepared by dispersing an acrylate copolymer with graphite particles, exhibits an order-of-magnitude variation in resistivity over a temperature change of a few degrees. The transient behavior of the fabricated device was measured, and the effects on different driving conditions with active cooling were measured and discussed. In addition, the measurement results also show that the temperature drift is not obvious in long-term testing, which indicates that the acrylate composite is quite reliable during repeated phase transition.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3