Two-Stage Mask-RCNN Approach for Detecting and Segmenting the Optic Nerve Head, Optic Disc, and Optic Cup in Fundus Images

Author:

Almubarak HaidarORCID,Bazi YakoubORCID,Alajlan NaifORCID

Abstract

In this paper, we propose a method for localizing the optic nerve head and segmenting the optic disc/cup in retinal fundus images. The approach is based on a simple two-stage Mask-RCNN compared to sophisticated methods that represent the state-of-the-art in the literature. In the first stage, we detect and crop around the optic nerve head then feed the cropped image as input for the second stage. The second stage network is trained using a weighted loss to produce the final segmentation. To further improve the detection in the first stage, we propose a new fine-tuning strategy by combining the cropping output of the first stage with the original training image to train a new detection network using different scales for the region proposal network anchors. We evaluate the method on Retinal Fundus Images for Glaucoma Analysis (REFUGE), Magrabi, and MESSIDOR datasets. We used the REFUGE training subset to train the models in the proposed method. Our method achieved 0.0430 mean absolute error in the vertical cup-to-disc ratio (MAE vCDR) on the REFUGE test set compared to 0.0414 obtained using complex and multiple ensemble networks methods. The models trained with the proposed method transfer well to datasets outside REFUGE, achieving a MAE vCDR of 0.0785 and 0.077 on MESSIDOR and Magrabi datasets, respectively, without being retrained. In terms of detection accuracy, the proposed new fine-tuning strategy improved the detection rate from 96.7% to 98.04% on MESSIDOR and from 93.6% to 100% on Magrabi datasets compared to the reported detection rates in the literature.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3