Investigation of Home Energy Management with Advanced Direct Load Control and Optimal Scheduling of Controllable Loads

Author:

Tamashiro Kanato,Alharbi TalalORCID,Mikhaylov AlexeyORCID,Hemeida Ashraf M.ORCID,Krishnan NarayananORCID,Lotfy Mohammed ElsayedORCID,Senjyu TomonobuORCID

Abstract

Due to the rapid changes in the energy situation on a global scale, the amount of RES installed using clean renewable energy sources such as Photovoltaic (PV) and Wind-power Generators (WGs) is rapidly increasing. As a result, there has been a great deal of research aimed at promoting the adoption of renewable energy. Research on Demand-side Management (DSM) has also been important in promoting the adoption of RES. However, the massive introduction of PV has changed the shape of the demand curve for electricity, which significantly impacts the operational planning of thermal generators. Therefore, this paper proposes an Advanced Direct Load Control (ADLC) model to temporarily shutdown the electric connection between the power grid and Smart Houses (SHs). The most important feature of the proposed model is that it temporarily shuts down the electric connection with the power grid. The shutdown is performed twice to increase the load demand during daytime hours and reduce the peak load during night-time hours. The proposed model also promotes the self-consumption of the generated power during the shutdown period, which is expected to reduce the operating cost. This paper considers six case studies for SH, and the operational costs and carbon dioxide emissions are compared and discussed. The results show that the SH with ADLC successfully reduces the operating costs and carbon dioxide emissions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3