Gas-Solid Flow in a Fluidized-Particle Tubular Solar Receiver: Off-Sun Experimental Flow Regimes Characterization

Author:

Gueguen RonnyORCID,Sahuquet Guillaume,Mer SamuelORCID,Toutant Adrien,Bataille Françoise,Flamant Gilles

Abstract

The fluidized particle-in-tube solar receiver concept is promoted as an attractive solution for heating particles at high temperature in the context of the next generation of solar power tower. Similar to most existing central solar receivers, the irradiated part of the system, the absorber, is composed of tubes in which circulate the fluidized particles. In this concept, the bottom tip of the tubes is immersed in a fluidized bed generated in a vessel named the dispenser. A secondary air injection, called aeration, is added at the bottom of the tube to stabilize the flow. Contrary to risers, the particle mass flow rate is controlled by a combination of the overpressure in the dispenser and the aeration air velocity in the tube. This is an originality of the system that justifies a specific study of the fluidization regimes in a wide range of operating parameters. Moreover, due to the high value of the aspect ratio, the particle flow structure varies along the tube. Experiments were conducted with Geldart Group A particles at ambient temperature with a 0.045 m internal diameter and 3 m long tube. Various temporal pressure signal processing methods, applied in the case of classical risers, are applied. Over a short acquisition time, a cross-reference of the results is necessary to identify and characterize the fluidization regimes. Bubbling, slugging, turbulent and fast fluidization regimes are encountered and the two operation modes, without and with particle circulation, are compared.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3