Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process

Author:

Guo Yixuan,Liang Xiao,Niu Ziyu,Cao Zezhou,Lei Liuwei,Xiong Hualin,Chen Diyi

Abstract

In a sudden load increasing process (SLIP), the hydroelectric generating system (HGS) experiences a severe vibration response due to the sudden change of the hydraulic-mechanical-electric parameters (HMEPs). The instability of HGS limits the ability of sudden load increase, and its flexibility and reliability are reduced. Thus, in this study, a new transient nonlinear coupling model of HGS is proposed, which couples the hydro-turbine governing system (HTGS) and the hydro-turbine generator shafting system (HGSS) with the hydraulic-mechanical-electric coupling force, rotating speed, flow rate, hydro-turbine torque, electromagnetic torque, and guide vane opening. By using numerical simulation, the influences of different HMEPs on the vibration characteristics of HGS in SLIP are analyzed. The result shows that, compared with stable operating conditions, the vibration amplitude of HGS increases sharply in SLIP. The increase of the sudden load increasing amount, blade exit flow angle, mass eccentricity and excitation current, and the decrease in guide bearing stiffness and average air gap between the stator and rotor cause abnormal vibration of different degrees in the HGS. Hydraulic factors have the greatest influence on the nonlinear dynamic behavior of HGS. The maximum vibration amplitude of HGS in SLIP is increased by 70.46%, compared with that under stable operating conditions. This study provides reasonable reference for the analysis of the nonlinear dynamic behavior of HGS in SLIP under the multiple vibration sources.

Funder

Natural Science Foundation of Shaanxi Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3