Inverse Optimal Control Using Metaheuristics of Hydropower Plant Model via Forecasting Based on the Feature Engineering

Author:

Perez-Villalpando Marlene A.ORCID,Gurubel Tun Kelly J.ORCID,Arellano-Muro Carlos A.ORCID,Fausto Fernando

Abstract

Optimal operation of hydropower plants (HP) is a crucial task for the control of several variables involved in the power generation process, including hydraulic level and power generation rate. In general, there are three main problems that an optimal operation approach must address: (i) maintaining a hydraulic head level which satisfies the energy demand at a given time, (ii) regulating operation to match with certain established conditions, even in the presence of system’s parametric variations, and (iii) managing external disturbances at the system’s input. To address these problems, in this paper we propose an approach for optimal hydraulic level tracking based on an Inverse Optimal Controller (IOC), devised with the purpose of regulating power generation rates on a specific HP infrastructure. The Closed–Loop System (CLS) has been simulated using data collected from the HP through a whole year of operation as a tracking reference. Furthermore, to combat parametric variations, an accumulative action is incorporated into the control scheme. In addition, a Recurrent Neural Network (RNN) based on Feature Engineering (FE) techniques has been implemented to aid the system in the prediction and management of external perturbations. Besides, a landslide is simulated, causing the system’s response to show a deviation in reference tracking, which is corrected through the control action. Afterward, the RNN is including of the aforementioned system, where the trajectories tracking deviation is not perceptible, at the hand of, a better response with respect to use a single scheme. The results show the robustness of the proposed control scheme despite climatic variations and landslides in the reservoir operation process. This proposed combined scheme shows good performance in presence of parametric variations and external perturbations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3