Classification of Geomembranes as Raw Material for Defects Reduction in the Manufacture of Biodigesters Using an Artificial Neuronal Network

Author:

Camarena-Martinez Rocio,Lizarraga-Morales Rocio A.ORCID,Baeza-Serrato Roberto

Abstract

Recently, biodigesters have attracted much attention as an efficient alternative for energy generation and organic waste treatment. The final performance of a biodigester depends heavily on the quality of its building process and the selection of its raw material: the geomembrane. The geomembrane is the coat that covers the biodigester used to control the migration of fluids. Therefore, the selection of the proper geomembrane, in terms of thickness, resistance, flexibility, etc., is fundamental. Unfortunately, there are no studies for the selection of geomembranes, and usually, it is an empirical process performed by workers based on their own experience. Such empirical selection might be inaccurate, limited, inconvenient, and even dangerous. In order to assist workers during the building process of a biodigester, this study proposes the use of an Artificial Neural Network (ANN) to classify a geomembrane as appropriate or not appropriate for the manufacture of a biodigester. The ANN is trained with a database built from qualitative and quantitative evaluations of different characteristics of geomembranes. The results indicate that the proposed ANN classifies the most suitable geomembranes with a 99.9% success rate. The proposed ANN becomes a reliable tool that contributes to the quality and safety of a biodigester.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3