Functional Materials for Waste-to-Energy Processes in Supercritical Water

Author:

Maxim FlorentinaORCID,Poenaru Iuliana,Toma Elena Ecaterina,Stoian Giuseppe StefanORCID,Teodorescu Florina,Hornoiu CristianORCID,Tanasescu Speranta

Abstract

In response to increasing energy demand, various types of organic wastes, including industrial and municipal wastewaters, or biomass wastes, are considered reliable energy sources. Wastes are now treated in supercritical water (SCW) for non-fossil fuel production and energy recovery. Considering that SCW technologies are green and energetically effective, to implement them on a large scale is a worldwide interest. However, issues related to the stability and functionality of materials used in the harsh conditions of SCW reactors still need to be addressed. Here we present an overview on materials used in the SCW technologies for energy harvesting from wastes. There are catalysts based on metals or metal oxides, and we discuss on these materials’ efficiency and selectivity in SCW conditions. We focus on processes relevant to the waste-to-energy field, such as supercritical water gasification (SCWG) and supercritical water oxidation (SCWO). We discuss the results reported, mainly in the last decades in connection to the current concept of supercritical pseudo-boiling (PB), a phenomenon occurring at the phase change from liquid-like (LL) to gas-like (GL) state of a fluid. This review aims to be a useful database that provides guidelines for the selection of the abovementioned functional materials (catalysts, catalyst supports, and sorbents) for the SCW process, starting from wastes and ending with energy-relevant products.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference137 articles.

1. Municipal Solid Waste Management;Stucki,2003

2. Solid waste management challenges for cities in developing countries

3. Office of the European Union Horizon Europe Strategic plan 2021–2024 https://op.europa.eu/en/publication-detail/-/publication/3c6ffd74-8ac3-11eb-b85c-01aa75ed71a1/language-en/format-PDF/source-search

4. European Environment Agency Waste Management https://www.eea.europa.eu/themes/waste/waste-management

5. Chemical recycling of Polyethylene Terephthalate (PET) waste using Sub- and supercritical water;Căta;Rev. Roum. Chim.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3