Abstract
Universal access to electricity is a crucial challenge in many developing countries. Establishing the electrification agenda of an underserved region is a complicated task where computer models play a critical role in calculating geospatial plans that efficiently allocate resources. Such plans should include—among other things—reasonable estimations of the designs and economic costs of standalone systems, mini-grids, and grid extensions. This implies that computer models need to estimate the network cost for many potential mini-grids. To that end, most planning tools apply quick rules of thumb or geometric methods that ignore power flows and electric constraints, which play a significant role in network designs. This paper presents a methodology that rapidly estimates any low-voltage mini-grid network cost without neglecting the impact of electrical feasibility in such cost. We present a case study where we evaluate our method in terms of accuracy and computation time. We also compare our method with a quick estimation similar to the ones most regional planning tools apply, showing the effectiveness of our method.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference58 articles.
1. Tracking SDG 7: The Energy Progress Report 2021,2021
2. The Sustainable Development Goals Report 2018
https://www.un-ilibrary.org/content/publication/7d014b41-en
3. Electrification of Sub-Saharan Africa through PV/hybrid mini-grids: Reducing the gap between current business models and on-site experience
4. Mini Grids for Half a Billion People: Market Outlook and Handbook for Decision Makers. Executive Summary. Technical Report 014/19,2019
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献