Warm Plasma Application in Tar Conversion and Syngas Valorization: The Fate of Hydrogen Sulfide

Author:

Wnukowski MateuszORCID,Moroń WojciechORCID

Abstract

Warm plasma techniques are considered a promising method of tar removal in biomass-derived syngas. The fate of another problematic syngas impurity—hydrogen sulfide—is studied in this work. It is revealed that processing simulated syngas with a microwave plasma results in hydrogen sulfide conversion. For different gas flow rates (20–40 NLPM) and hydrogen sulfide concentrations ranging from 250 ppm to 750 ppm, the conversion rate varies from ca. 26% to 45%. The main sulfur-containing products are carbon disulfide (ca. 30% of total sulfur) and carbonyl sulfide (ca. 8% of total sulfur). Besides them, significantly smaller quantities of sulfates and benzothiophene are also detected. The main components of syngas have a tremendous impact on the fate of hydrogen sulfide. While the presence of carbon monoxide, methane, carbon dioxide, and tar surrogate (toluene) leads to the formation of carbonyl sulfide, carbon disulfide, sulfur dioxide, and benzothiophene, respectively, the abundance of hydrogen results in the recreation of hydrogen sulfide. Consequently, the presence of hydrogen in the simulated syngas is the main factor that determines the low conversion rate of hydrogen sulfide. Conversion of hydrogen sulfide into various sulfur compounds might be problematic in the context of syngas purification and the application of the right technique for sulfur removal.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3