Partial Nitrification Characteristics of an Immobilized Carrier in Municipal Wastewater under Low-Temperature Shock: The Role of the Nitrifying Bacterial Community Structure

Author:

Wang Jiawei1,Yang Lixinrui1,Zhang Yan1,Zhang Haiping1,Liu Jiaju23

Affiliation:

1. Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China

2. Research Center for Integrated Control of Watershed Water Pollution, Chinese Academy of Environmental Sciences, Beijing 100012, China

3. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

Abstract

To analyze the effects of the nitrifying bacterial community structure on the partial nitrification (PN) characteristics in a PN-immobilized carrier in municipal wastewater under low-temperature shock, two PN-immobilized carriers with different nitrifying bacterial communities were investigated. The E1-immobilized carrier contained a high abundance of ammonia-oxidizing bacteria (AOB; 38.59%), and the E2-immobilized carrier had a low AOB abundance of 4.78%. The results of experiments with different dissolved oxygen (DO) concentrations showed that the oxygen-limited environment inside the immobilized carrier, generated by the high AOB abundance, was critical for achieving PN. The nitrite accumulation rate (NAR) decreased from 90.0–93.9% to 84.2–88.3% for the E1-immobilized carrier and from 86.0–90.4% to 81.7–85.8% for the E2-immobilized carrier under low-temperature shock (the temperature suddenly decreased from 25 ± 1 °C to 15 ± 1 °C). The decrease in the ammonia oxidation rate due to the decreased AOB activity led to a decrease in NAR. Moreover, NOB abundance in the E2-immobilized carrier increased because of the destruction of the oxygen-limiting region in the immobilized carrier due to the low AOB abundance. Increasing the abundance of AOB in the PN-immobilized carrier could reduce the adverse effects from the low-temperature shock. The results of this study can be used to further develop immobilization technology for efficient PN in mainstream wastewater treatment.

Funder

Science and Technology Project of Hebei Education Department

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3