Integration of Surface Reflectance and Aerosol Retrieval Algorithms for Multi-Resolution Aerosol Optical Depth Retrievals over Urban Areas

Author:

Bilal MuhammadORCID,Mhawish AlaaORCID,Ali Md. ArfanORCID,Nichol Janet E.ORCID,Leeuw Gerrit deORCID,Khedher Khaled MohamedORCID,Mazhar UsmanORCID,Qiu ZhongfengORCID,Bleiweiss Max P.ORCID,Nazeer MajidORCID

Abstract

The SEMARA approach, an integration of the Simplified and Robust Surface Reflectance Estimation (SREM) and Simplified Aerosol Retrieval Algorithm (SARA) methods, was used to retrieve aerosol optical depth (AOD) at 550 nm from a Landsat 8 Operational Land Imager (OLI) at 30 m spatial resolution, a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution, and a Visible Infrared Imaging Radiometer Suite (VIIRS) at 750 m resolution over bright urban surfaces in Beijing. The SEMARA approach coupled (1) the SREM method that is used to estimate the surface reflectance, which does not require information about water vapor, ozone, and aerosol, and (2) the SARA algorithm, which uses the surface reflectance estimated by SREM and AOD measurements obtained from the Aerosol Robotic NETwork (AERONET) site (or other high-quality AOD) as the input to estimate AOD without prior information on the aerosol optical and microphysical properties usually obtained from a look-up table constructed from long-term AERONET data. In the present study, AOD measurements were obtained from the Beijing AERONET site. The SEMARA AOD retrievals were validated against AOD measurements obtained from two other AERONET sites located at urban locations in Beijing, i.e., Beijing_RADI and Beijing_CAMS, over bright surfaces. The accuracy and uncertainties/errors in the AOD retrievals were assessed using Pearson’s correlation coefficient (r), root mean squared error (RMSE), relative mean bias (RMB), and expected error (EE = ± 0.05 ± 20%). EE is the envelope encompassing both absolute and relative errors and contains 68% (±1σ) of the good quality retrievals based on global validation. Here, the EE of the MODIS Dark Target algorithm at 3 km resolution is used to report the good quality SEMARA AOD retrievals. The validation results show that AOD from SEMARA correlates well with AERONET AOD measurements with high correlation coefficients (r) of 0.988, 0.980, and 0.981; small RMSE of 0.08, 0.09, and 0.08; and small RMB of 4.33%, 1.28%, and −0.54%. High percentages of retrievals, i.e., 85.71%, 91.53%, and 90.16%, were within the EE for Landsat 8 OLI, MODIS, and VIIRS, respectively. The results suggest that the SEMARA approach is capable of retrieving AOD over urban areas with high accuracy and small errors using high to medium spatial resolution satellite remote sensing data. This approach can be used for aerosol monitoring over bright urban surfaces such as in Beijing, which is frequently affected by severe dust storms and haze pollution, to evaluate their effects on public health.

Funder

National Key Research and Development Program of China

Jiangsu Provincial Department of Education

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3