Fractional Vegetation Cover Derived from UAV and Sentinel-2 Imagery as a Proxy for In Situ FAPAR in a Dense Mixed-Coniferous Forest?

Author:

Putzenlechner BirgittaORCID,Marzahn PhilipORCID,Koal Philipp,Sánchez-Azofeifa ArturoORCID

Abstract

The fraction of absorbed photosynthetic active radiation (FAPAR) is an essential climate variable for assessing the productivity of ecosystems. Satellite remote sensing provides spatially distributed FAPAR products, but their accurate and efficient validation is challenging in forest environments. As the FAPAR is linked to the canopy structure, it may be approximated by the fractional vegetation cover (FCOVER) under the assumption that incoming radiation is either absorbed or passed through gaps in the canopy. With FCOVER being easier to retrieve, FAPAR validation activities could benefit from a priori information on FCOVER. Spatially distributed FCOVER is available from satellite remote sensing or can be retrieved from imagery of Unmanned Aerial Vehicles (UAVs) at a centimetric resolution. We investigated remote sensing-derived FCOVER as a proxy for in situ FAPAR in a dense mixed-coniferous forest, considering both absolute values and spatiotemporal variability. Therefore, direct FAPAR measurements, acquired with a Wireless Sensor Network, were related to FCOVER derived from UAV and Sentinel-2 (S2) imagery at different seasons. The results indicated that spatially aggregated UAV-derived FCOVER was close (RMSE = 0.02) to in situ FAPAR during the peak vegetation period when the canopy was almost closed. The S2 FCOVER product underestimated both the in situ FAPAR and UAV-derived FCOVER (RMSE > 0.3), which we attributed to the generic nature of the retrieval algorithm and the coarser resolution of the product. We concluded that UAV-derived FCOVER may be used as a proxy for direct FAPAR measurements in dense canopies. As another key finding, the spatial variability of the FCOVER consistently surpassed that of the in situ FAPAR, which was also well-reflected in the S2 FAPAR and FCOVER products. We recommend integrating this experimental finding as consistency criteria in the context of ECV quality assessments. To facilitate the FAPAR sampling activities, we further suggest assessing the spatial variability of UAV-derived FCOVER to benchmark sampling sizes for in situ FAPAR measurements. Finally, our study contributes to refining the FAPAR sampling protocols needed for the validation and improvement of FAPAR estimates in forest environments.

Funder

Federal Ministry of Education and Research

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference75 articles.

1. Fraction of absorbed photosynthetically active radiation;Liang,2020

2. Photosynthetically Active Radiation: Measurement photosynthesis/photosynthetic(ally) active radiation (PAR) measurement and Modeling photosynthesis/photosynthetic(ally) active radiation (PAR) modeling;Mõttus,2013

3. Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems

4. What is global photosynthesis? History, uncertainties and opportunities

5. The Global Climate Observing System for Climate: Implementation Needs,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3