Multi-Layer Overlapped Subaperture Algorithm for Extremely-High-Squint High-Resolution Wide-Swath SAR Imaging with Continuously Time-Varying Radar Parameters

Author:

Wang YanORCID,Min RuiORCID,Ding ZegangORCID,Zeng TaoORCID,Li LinghaoORCID

Abstract

Extremely-high-squint (EHS) geometry of the traditional constant-parameter synthetic aperture radar (SAR) induces non-orthogonal wavenumber spectrum and hence the distortion of point spread function (PSF) in focused images. The method invented to overcome this problem is referred to as new-concept parameter-adjusting SAR. It corrects the PSF distortion by adjusting radar parameters, such as carrier frequency and chirp rate, based on instant data acquisition geometry. In this case, the characteristic of signal is quite different from the constant-parameter SAR and therefore, the traditional imaging algorithms cannot be directly applied for parameter-adjusting SAR imaging. However, the existing imaging algorithm for EHS parameter-adjusting SAR suffers from insufficient accuracy if a high-resolution wide-swath (HRWS) performance is required. Thus, this paper proposes a multi-layer overlapped subaperture algorithm (ML-OSA) for EHS HRWS parameter-adjusting SAR imaging with three main contributions: First, a more accurate signal model with time-varying radar parameters in high-squint geometry is derived. Second, phase errors are compensated with much higher accuracy by implementing multiple layers of coarse-to-fine spatially variant filters. Third, the analytical swath limit of the ML-OSA is derived by considering both the residual errors of signal model and phase compensations. The presented approach is validated via both the point- and extended-target computer simulations.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Squint High-Frame-Rate Uniform-Resolution Video SAR: Parameter Design and Fast Imaging;IEEE Transactions on Aerospace and Electronic Systems;2023-12

2. A Parameter-Adjusting Auto-Registration Overlapped Subaperture Algorithm for Video Synthetic Aperture Radar Imaging;IEEE Transactions on Geoscience and Remote Sensing;2023

3. Focusing of Wide-Swath Range Sweep SAR With Extended Wide Nonlinear Chirp Scaling Algorithm;IEEE Transactions on Geoscience and Remote Sensing;2023

4. Research on the Imaging Method of Long-Distance High-Speed Targets in the Earth-Moon Space;2022 IEEE 22nd International Conference on Communication Technology (ICCT);2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3