Abstract
Several studies have shown the relevance of satellite systems in detecting, monitoring, and characterizing fire events as support to fire management activities. On the other hand, up to now, only a few satellite-based platforms provide immediately and easily usable information about events in progress, in terms of both hotspots, which identify and localize active fires, and the danger conditions of the affected area. However, this kind of information is usually provided through separated layers, without any synthetic indicator which, indeed, could be helpful, if timely provided, for planning the priority of the intervention of firefighting resources in case of concurrent fires. In this study, we try to fill these gaps by presenting an Integrated Satellite System (ISS) for fire detection and prioritization, mainly based on the Robust Satellite Techniques (RST), and the Fire Danger Dynamic Index (FDDI), an original re-structuration of the Índice Combinado de Risco de Incêndio Florestal (ICRIF), for the first time presented here. The system, using Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data, provides near real-time integrated information about both the fire presence and danger over the affected area. These satellite-based products are generated in common formats, ready to be ingested in Geographic Information System (GIS) technologies. Results shown and discussed here, on the occasion of concurrent winter and summer fires in Italy, in agreement with information from independent sources, demonstrate that the ISS system, operating at a regional/national scale, may provide an important contribution to fire prioritization. This may result in the mitigation of fire impact in populated areas, infrastructures, and the environment.
Funder
National Operational Programme-Italian Ministry of Economic Development
Subject
General Earth and Planetary Sciences
Reference65 articles.
1. Fire Management—Global Assessment 2006. A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005
2. Wildland fire in ecosystems: effects of fire on soils and water
3. Effects of wildfires on flora, fauna and physico-chemical properties of soil—An overview;Jhariya;J. Appl. Nat. Sci.,2014
4. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice
5. Massive Forest Fires in Siberia Is a Climate Emergency
https://www.greenpeace.org/international/press-release/23660/massive-forest-fires-in-siberia-is-a-climate-emergency/
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献