Abstract
Diabetes is a global epidemic that impacts millions of people every year. Enhanced dietary assessment techniques are critical for maintaining a healthy life for a diabetic patient. Moreover, hospitals must monitor their diabetic patients’ food intake to prescribe a certain amount of insulin. Malnutrition significantly increases patient mortality, the duration of the hospital stay, and, ultimately, medical costs. Currently, hospitals are not fully equipped to measure and track a patient’s nutritional intake, and the existing solutions require an extensive user input, which introduces a lot of human errors causing endocrinologists to overlook the measurement. This paper presents DietSensor, a wearable three-dimensional (3D) measurement system, which uses an over the counter 3D camera to assist the hospital personnel with measuring a patient’s nutritional intake. The structured environment of the hospital provides the opportunity to have access to the total nutritional data of any meal prepared in the kitchen as a cloud database. DietSensor uses the 3D scans and correlates them with the hospital kitchen database to calculate the exact consumed nutrition by the patient. The system was tested on twelve volunteers with no prior background or familiarity with the system. The overall calculated nutrition from the DietSensor phone application was compared with the outputs from the 24-h dietary recall (24HR) web application and MyFitnessPal phone application. The average absolute error on the collected data was 73%, 51%, and 33% for the 24HR, MyFitnessPal, and DietSensor systems, respectively.
Funder
National Institutes of Health
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献