Abstract
The dimensions of a passive greenhouse are one of the decisions made by producers or builders based on characteristics of the available land and the economic cost of building the structure per unit of covered area. In few cases, the design criteria are reviewed and the dimensions are established based on the type of crop and local climate conditions. One of the dimensions that is generally exposed to greater manipulation is the height above the gutter and the general height of the structure, since a greenhouse with a lower height has a lower economic cost. This has led some countries in the tropical region to build greenhouses that, due to their architectural characteristics, have inadequate microclimatic conditions for agricultural production. The objective of this study was to analyze the effect on air flows and thermal distribution generated by the increase of the height over gutter of a Colombian multi-tunnel greenhouse using a successfully two-dimensional computational fluid dynamics (CFD) model. The simulated numerical results showed that increasing the height of the greenhouse allows obtaining temperature reductions from 0.1 to 11.7 °C depending on the ventilation configuration used and the external wind speed. Likewise, it was identified that the combined side and roof ventilation configuration (RS) allows obtaining higher renovation indexes (RI) in values between 144 and 449% with respect to the side ventilation (S) and roof ventilation (R) configurations. Finally, the numerical results were successfully fitted within the surface regression models responses.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献