High-Resolution PM2.5 Estimation Based on the Distributed Perception Deep Neural Network Model

Author:

Liu JiweiORCID,Sun Yong,Li Qun

Abstract

The accurate measurement of the PM2.5 individual exposure level is a key issue in the study of health effects. However, the lack of historical data and the minute coverage of ground monitoring points are obstacles to the study of such issues. Based on the aerosol optical depth provided by NASA, combined with ground monitoring data and meteorological data, it is an effective method to estimate the near-ground concentration of PM2.5. With the deepening of related research, the models used have developed from univariate and multivariate linear models to nonlinear models such as support vector machine, random forest model, and deep learning neural network model. Among them, the depth neural network model has better performance. However, in the existing research, the variables used are input into the same neural network together, that is, the complex relationship caused by the lag effect of features and the correlation and partial correlation between features have not been considered. The above neural network framework can not be well applied to the complex situation of atmospheric systems and the estimation accuracy of the model needs to be improved. This is the first problem that we need to be overcome. Secondly, in the missing data value processing, the existing studies mostly use single interpolation methods such as linear fitting and Kriging interpolation. However, because the time and place of data missing are complex and changeable, a single method is difficult to deal with a large area of strip and block missing data. Moreover, the linear fitting method is easy to smooth out the special data in bad weather. This is the second problem that we need to overcome. Therefore, we construct a distributed perception deep neural network model (DP-DNN) and spatiotemporal multiview interpolation module to overcome problems 1 and 2. In empirical research, based on the Beijing–Tianjin–Hebei–Shandong region in 2018, we introduce 50 features such as meteorology, NDVI, spatial-temporal feature to analyze the relationship between AOD and PM2.5, and test the performance of DP-DNN and spatiotemporal multiview interpolation module. The results show that after applying the spatiotemporal multiview interpolation module, the average proportion of missing data decreases from 52.1% to 4.84%, and the relative error of the results is 27.5%. Compared with the single interpolation method, this module has obvious advantages in accuracy and level of completion. The mean absolute error, relative error, mean square error, and root mean square error of DP-DNN in time prediction are 17.7 μg/m3, 46.8%, 766.2 g2/m6, and 26.9 μg/m3, respectively, and in space prediction, they are 16.6 μg/m3, 41.8%, 691.5 μg2/m6, and 26.6 μg/m3. DP-DNN has higher accuracy and generalization ability. At the same time, the estimation method in this paper can estimate the PM2.5 of the selected longitude and latitude, which can effectively solve the problem of insufficient coverage of China’s meteorological environmental quality monitoring stations.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3