Testing the Applicability of the Safe-by-Design Concept: A Theoretical Case Study Using Polymer Nanoclay Composites for Coffee Capsules

Author:

Pavlicek AnnaORCID,Part FlorianORCID,Gressler Sabine,Rose Gloria,Gazsó André,Ehmoser Eva-KathrinORCID,Huber-Humer MarionORCID

Abstract

The production and use of engineered nanomaterials and nano-enabled products is increasing, enabling innovations in many application areas, e.g., in the sector of food contact materials. However, nanosafety-relevant information for chemical risk assessment is still scarce, leading to a high level of uncertainty and making the early integration of safety to the innovation process indispensable. This study analyzed the strengths, weaknesses, and applicability of the nano-specific Safe-by-Design (SbD) concept using nanoclay-containing polymer coffee capsules as a theoretical case study. In addition, a material flow analysis was conducted to identify exposure pathways and potential risks, and a multi-stakeholder approach was applied to discursively discuss challenges when attempting to combine safety and innovation at an early stage. The results indicate that the SbD concept is generally welcomed by all stakeholders, but there is a lack of clear rules on the transfer of information between the actors involved. Furthermore, a voluntary, practical application usually requires in-depth knowledge of nanotechnology and often additional financial efforts. Therefore, incentives need to be created, as there is currently no obvious added value from a company’s point of view. The SbD concept should be further developed, standardized, and integrated into existing legal frameworks to be implemented effectively.

Funder

Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3