Abstract
The study examines the effect of using low nickel (Ni) with high ceria (CeO2) anode content towards the oxidation of H2 and CH4 fuel by evaluating the activation energy of the ohmic process and charge transfer process. Using a micro-tubular solid oxide fuel cell (MT-SOFC), the anodes are made up of 50% YSZ with varying NiO:CeO2 percentages from 0% NiO, 50% CeO2 to 50% NiO, 0% CeO2. The performance is measured based on maximum power density (MPD), electrochemical impedance spectroscopy (EIS) and activation energy, Ea of the ohmic (Rohm) and charge transfer (Rct) processes. We found that by lowering the Ni content to lower than 50% NiO, anode conductivity will drop by 7-fold. An anode containing 37.5% NiO, 12.5% CeO2 yield MPD of 41.1 and 2.9 mW cm−2 when tested on H2 and CH4 fuels thus have the lowest Ni content without an abrupt negative effect on the MPD and EIS. The significant effect of conductivity drops on MPD and EIS are observed to occur at 25% NiO, 25% CeO2 and lower NiO content. However, anode content of 25% NiO, 25% CeO2 has the lowest Ea for Rct (29.74 kJ mol−1) for operation in CH4, making it the best anode composition to oxidize CH4. As a conclusion, an anode containing 25% NiO:25% CeO2:50% YSZ and 37.5% NiO:12.5% CeO2:50% YSZ shows promising results in becoming the low Ni anode for coking-tolerant SOFC.
Funder
Ministry of Higher Education
University of Technology Malaysia
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献