An Economic Risk Analysis in Wind and Pumped Hydro Energy Storage Integrated Power System Using Meta-Heuristic Algorithm

Author:

Singh Nitesh Kumar,Koley ChaitaliORCID,Gope SadhanORCID,Dawn SubhojitORCID,Ustun Taha SelimORCID

Abstract

Due to the restructuring of the power system, customers always try to obtain low-cost power efficiently and reliably. As a result, there is a chance to violate the system security limit, or the system may run in risk conditions. In this paper, an economic risk analysis of a power system considering wind and pumped hydroelectric storage (WPHS) hybrid system is presented with the help of meta-heuristic algorithms. The value-at-risk (VaR) and conditional value-at-risk (CVaR) are used as the economic risk analysis tool with two different confidence levels (i.e., 95% and 99%). The VaR and CVaR with higher negative values represent the system in a higher-risk condition. The value of VaR and CVaR on the lower negative side or towards a positive value side indicates a less risky system. The main objective of this work is to minimize the system risk as well as minimize the system generation cost by optimal placement of wind farm and pumped hydro storage systems in the power system. Sequential quadratic programming (SQP), artificial bee colony algorithms (ABC), and moth flame optimization algorithms (MFO) are used to solve optimal power flow problems. The novelty of this paper is that the MFO algorithm is used for the first time in this type of power risk curtailment problem. The IEEE 30 bus system is considered to analyze the system risk with the different confidence levels. The MVA flow of all transmission lines is considered here to calculate the value of VaR and CVaR. The hourly VaR and CVaR values of the hybrid system considering the WPHS system are reported here and the numerical case studies of the hybrid WPHS system demonstrate the effectiveness of the proposed approach. To validate the presented approach, the results obtained by using the MFO algorithm are compared with the SQP and ABC algorithms’ results.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3