Modeling Performance of Butterfly Valves Using Machine Learning Methods

Author:

Ekster Alex,Alchakov Vasiliy,Meleshin Ivan,Larionenko Alexandr

Abstract

Control of airflow of activated sludge systems has significant challenges due to the non-linearity of the control element (butterfly valve). To overcome this challenge, some valve manufacturers developed valves with linear characteristics. However, these valves are 10–100 times more expensive than butterfly valves. By developing models for butterfly valves installed characteristics and utilizing these models for real-time airflow control, the authors of this paper aimed to achieve the same accuracy of control using butterfly valves as achieved using valves with linear characteristics. Several approaches were tested to model the installed valve’s characteristics, such as a formal mathematical model utilizing Simscape/Matlab software, a semi-empirical model, and several machine learning methods (MLM), including regression, support vector machine, Gaussian process, decision tree, and deep learning. Several versions of the airflow-valve position models were developed using each machine learning method listed above. The one with the smallest forecast error was selected for field testing at the 55.5×103 m3/day 12 MGD City of Chico activated sludge system. Field testing of the formal mathematical model, semi-empirical model, and the regularized gradient boosting machine model (the best among MLMs) showed that the regularized gradient boosting machine model (RGBMM) provided the best accuracy. The use of the RGBMMs in airflow control loops since 2019 at the City of Chico wastewater treatment plant showed that these models are robust and accurate (2.9% median error).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFD analysis of a butterfly valve to optimize its design;2ND INTERNATIONAL CONFERENCE ON APPLIED RESEARCH AND ENGINEERING (ICARAE2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3