Comparative Study of Factors Contributing to Land Surface Temperature in High-Density Built Environments in Megacities Using Satellite Imagery

Author:

Zeng Frankie FanjieORCID,Feng Jiajun,Zhang Yuanzhi,Tsou Jin Yeu,Xue Tengfei,Li Yu,Li Rita Yi ManORCID

Abstract

In this study, the root sources contributing to the urban heat island (UHI) effect between megacities, such as Hong Kong and Shenzhen, were integrated and compared using satellite remote sensing data. Classification and multilayer perceptron regression tree (CARTMLP) algorithms were used to classify land use. The radiative transfer equation method was applied to retrieve the land surface temperatures (LSTs) in the study area. Multiple linear regression analysis was applied to determine the relationship between land-use types and UHIs. The experimental results show a large area of relatively high temperature dispersed within Shenzhen, and comparatively small areas highly centralized in Hong Kong, with the retrieved LST in Hong Kong lower than that in Shenzhen. In addition, the surface temperature of large complex buildings decorated with high-albedo materials in Hong Kong was higher than in Shenzhen (e.g., Hong Kong International Airport, 25.12 °C; Shenzhen Bao’an International Airport, 23.38 °C), with artificial heat being an important contributor to these differences. These results also imply that high-albedo materials are sufficient to alleviate high temperatures. These findings are integrated to propose an organic combination strategy for reducing UHI effects in urban areas in megacities worldwide, such as Hong Kong and Shenzhen in China.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3