A Novel Approach of Synchronization of Microgrid with a Power System of Limited Capacity

Author:

Ghulomzoda AnvariORCID,Safaraliev MurodbekORCID,Matrenin PavelORCID,Beryozkina SvetlanaORCID,Zicmane Inga,Gubin PavelORCID,Gulyamov KamolORCID,Saidov Nasim

Abstract

Currently, active networks called microgrids are formed on the basis of local power supply systems with a small share of distributed generation. Microgrids operating in an island mode, in some cases, have the ability to transfer electricity excess to an external network leading to a synchronization requirement; thus, the optimization task in terms of the system’s synchronization must be considered. This paper proposes a method for obtaining synchronization between microgrids and power systems of limited capacity based on a passive synchronization algorithm, allowing us to connect a microgrid to an external power system with a minimum impact moment on the shaft of the generating equipment. The algorithm application was demonstrated by considering a real-life object in Tajikistan. The simulation was carried out on RastrWin3. The obtained results show that the microgrid generator is connected to an external power system at an angle of 0.3° and a power surge of 29 kW, unlike the classical synchronization algorithm with an angle of 6.8° and a power surge of 154 kW (a reduction of the shock moment by more than five times). The proposed synchronization method allows us to reduce the resource consumption of the generating equipment and increase the reliability and efficiency of the functioning units of the examined power system.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. The Microgrids Concept;Schwaegerl,2013

2. microgrids [guest editorial]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3