Realizing United Nations Sustainable Development Goals for Greener Remediation of Heavy Metals-Contaminated Soils by Biochar: Emerging Trends and Future Directions

Author:

Mazarji Mahmoud,Bayero Muhammad TukurORCID,Minkina TatianaORCID,Sushkova SvetlanaORCID,Mandzhieva SaglaraORCID,Tereshchenko AndreyORCID,Timofeeva Anna,Bauer TatianaORCID,Burachevskaya MarinaORCID,Kızılkaya RıdvanORCID,Gülser Coşkun,Keswani ChetanORCID

Abstract

The remediation of heavy metals (HMs) in soil is always an important topic, as environmental contamination by HMs is of serious concern. Numerous potential advantages, especially integrated with biochar produced from various biomass, might provide an ecologically beneficial tool for achieving the UN’s sustainable development objectives for greener soil remediation. The aim of this study was to address how the soil-science professions may best successfully utilize biochar for greener remediation of HMs-contaminated soils. In this context, the biochar preparation method from different agricultural feedstock, and its use as a soil amendment for remediation of HMs-contaminated soil, were discussed. Furthermore, biochar-based nanocomposites containing functional materials have lately attracted much interest because of the unique properties emerging from their nanoscale size compartment, and present good promise in terms of reactivity and stability. The utility and potency of biochar-based nanocomposites, on the other hand, are determined by their ability to adapt to particular site circumstances and soil qualities. This overview summarized the current advances in the application for the remediation of HMs-polluted soils. Future views on the usage and possibilities for deploying biochar-based nanocomposites in polluted soils were discussed.

Funder

Ministry of Education and Science of Russia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3