Abstract
During their service life, concrete structures are subjected to combined fluctuations of temperature and relative humidity, which can influence their durability and service life performance. Self-healing has in recent years attracted great interest to mitigate the effects of such environmental exposure on concrete structures. Several studies have explored the autogenous crack self-healing in concrete incorporating superabsorbent polymers (SAPs) and exposed to different environments. However, none of the published studies to date has investigated the self-healing in concrete incorporating SAPs under a combined change in temperature and relative humidity. In the present study, the crack width changes due to self-healing of cement mortars incorporating SAPs under a combined change of temperature and relative humidity were investigated and quantified using micro-computed tomography and three-dimensional image analysis. A varying dosage of SAPs expressed as a percentage (0.5%, 1% and 2%) of the cement mass was incorporated in the mortar mixtures. In addition, the influence of other environments such as continuous water submersion and cyclic wetting and drying was studied and quantified. The results of segmentation and quantification analysis of X-ray µCT scans showed that mortar specimens incorporating 1% SAPs and exposed to environments with a combined change in temperature and relative humidity exhibited less self-healing (around 6.58% of healing efficiency). Conversely, when specimens were subjected to cyclic wetting and drying or water submersion, the healing efficiency increased to 19.11% and 26.32%, respectively. It appears that to achieve sustained self-healing of cracks, novel engineered systems that can assure an internal supply of moisture are needed.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献