Comparative Evaluation of Simplified Surface Energy Balance Index-Based Actual ET against Lysimeter Data in a Tropical River Basin

Author:

Kumar UtkarshORCID,Rashmi ,Chatterjee ChandranathORCID,Raghuwanshi Narendra Singh

Abstract

In the past decades, multispectral and multitemporal remote sensing has been popularly used for estimating actual evapotranspiration (ETc) across the globe. It has been proven to be a cost-effective tool for understanding agricultural practices in a region. Today, because of the availability of different onboard sensors on an increasing number of different satellites, land surface activity can be captured at fine spatial and time scales. In the present study, three multi-date satellite imageries were used for the evaluation of remote sensing-based estimation of actual evapotranspiration in paddy in the command area of the tropical Kangsabati river basin. A surface energy balance model, the Simplified-Surface Energy Balance Index (S-SEBI), was applied for all three dates of the Rabi season (2014–2015) for the estimation of actual evapotranspiration. The crop coefficient was calculated using the exhaustive survey data collected from the command area and adjusted to local conditions. The ETc estimated using the S-SEBI-based model was compared with the Food and Agriculture Organization Penman–Monteith (FAO-56 PM) method multiplied by the adjusted local crop coefficient and lysimeter data in the command area. The coefficient of determination (r2) was applied to examine the accuracy of the S-SEBI model with respect to lysimeter data and the FAO-56 PM-based ETc. The results showed that the S-SEBI model performed well with the lysimeter (r2 = 0.90) in comparison with FAO-56 PM, with an r2 of 0.65. In addition to this, the S-SEBI-based ET estimates correlated well with the FAO-56 PM, with r and RMSE values of 0.06 and 1.13 mm/day (initial stage), 0.85 and 0.48 mm/day (development stage), and 0.77 and 0.52 (maturity stage) for paddy, respectively. The S-SEBI-based ETc estimate varied with different stages of crop growth and successfully captured the spatial heterogeneity within the command area. In general, this study showed that the S-SEBI method has the potential to calculate spatial evapotranspiration and provide useful information for efficient water management. The results revealed the applicability and accuracy of remote sensing-based ET for managing water resources in a command area with scarce data.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3