Design and Optimization of a Spiral-Tube Instantaneous Water Heater Using Response Surface Methodology

Author:

Rezaei Pedram1,Moheghi Hamid Reza1,Amiri Delouei Amin2ORCID

Affiliation:

1. Industrial Engineering Department, University of Bojnord, Bojnord 945 3155111, Iran

2. Mechanical Engineering Department, University of Bojnord, Bojnord 945 3155111, Iran

Abstract

In this paper, the fabrication and optimization of a spiral-tube heat exchanger (STHE) were considered for improving the heat transfer rate and efficiency of traditional instantaneous water heaters. The large number of instantaneous water heaters exported from the customers of the “Garman Gas Toos” company, which was mainly due to corrosion and leakage, imposed a lot of cost and credit reduction for this company. The high energy consumption was the second reason that justified working on a new STHE. The main innovation of this research is the design and construction of a new heat exchanger with a smaller size and higher efficiency with the help of identifying the factors affecting its efficiency and heat transfer rate. In order to optimize the responses, three variables were considered, including fin number (per unit area), exhaust outlet diameter, and water flow rate. Implementing face-centered central composite design (CCD), the proposed levels of factors and the corresponding response variables were measured in the “Garman Gas Toos” laboratory. Using the design of experiments (DoE), the effects of the three factors and their mutual interaction effects were evaluated. Response surface methodology (RSM) was devised to build a prediction model and obtain the values of the factors for which the responses were optimal. Based on the results, optimum conditions for the STHE were found to be an exhaust diameter of 4 cm and a water flow rate of 6 L/min coupled with six fins. At this optimal point, the values of efficiency and heat transfer rate, as response variables, were obtained as 85% and 8480 W, respectively.

Funder

Garman Gas Toos” company

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3