Abstract
Fired bricks represent one of the most popular building materials, of which production is still growing. Since the functional properties of bricks have reached their physical limits, the current development aims at an optimization of production procedures as it goes along with heavy environmental loads. This paper is focused on tailoring the firing procedure to optimize the energy demands. Dealing with five different clays, their heat storage properties are determined using inverse analysis of calorimetric data so that the measurement errors are reduced. Moreover, effective values incorporate the thermal processes that occur during firing. A simplified model of clay samples is then used to calculate the energy demands for reaching an optimal firing scheme. The results show that specific treatment is necessary for particular clays as the energy demands may range between 89 and 173 MJ·m−2, depending on a clay composition. The highest demands were found in the case of clays containing the high volume of calcite and dolomite, of which thermal decomposition is very energy demanding. Using the tailored firing scheme, one can reach energy savings of up to 49% while the functional properties would be preserved due to maintaining the optimal temperature evolution in the brick body.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献