Adaptive Machine Learning for Automated Modeling of Residential Prosumer Agents

Author:

Toquica DavidORCID,Agbossou KodjoORCID,Malhamé Roland,Henao NilsonORCID,Kelouwani SoussoORCID,Cardenas AlbenORCID

Abstract

An efficient participation of prosumers in power system management depends on the quality of information they can obtain. Prosumers actions can be performed by automated agents that are operating in time-changing environments. Therefore, it is essential for them to deal with data stream problems in order to make reliable decisions based on the most accurate information. This paper provides an in-depth investigation of data and concept drift issues in accordance with residential prosumer agents. Additionally, the adaptation techniques, forgetting mechanisms, and learning strategies employed to handle these issues are explored. Accordingly, an approach is proposed to adapt the prosumer agent models to overcome the gradual and sudden concept drift concurrently. The suggested method is based on triggered adaptation techniques and performance-based forgetting mechanism. The results obtained in this study demonstrate that the proposed approach is capable of constructing efficient prosumer agents models with regard to the concept drift problem.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. GridWise Transactive Energy Framework;GridWise Archit. Counc. Trans. Energy,2013

2. Dynamic Demand Response Controller Based on Real-Time Retail Price for Residential Buildings

3. Transactional Agents: Towards a Robust Multi-Agent System;Nagi,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3