Exploring New Avenues in Sustainable Urban Development: Ecological Carbon Dynamics of Park City in Chengdu

Author:

Tang Lin12ORCID,Wang Jing12,Xu Luo12,Lu Heng12

Affiliation:

1. Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China

2. The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China

Abstract

The close relationship between land use and carbon stock is crucial for regional carbon balance, territorial and spatial planning, and the sustainable development of ecosystems. As a pioneer of Park Cities, Chengdu plays a vital role in Chinese cities. To investigate the impact of Park City construction on carbon stock, this study adopted a new perspective, the Park City perspective, using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to analyze the spatial and temporal differences in carbon stock. Additionally, we used Geographic Detector to analyze the driving factors of carbon stock in Chengdu. Based on the carbon peaking and carbon neutrality goals (peaking carbon dioxide emissions before 2030 and achieving carbon neutrality before 2060), we simulated the carbon stock in Chengdu for the years 2030 and 2060. Simultaneously, combining the Future Land Use Simulation (FLUS) model, we simulated the changing trends of carbon stock in Chengdu under three scenarios: the natural development scenario (NDS), cultivated land protection scenario (CLDS), and Park City scenario (PCS). The results show the following: (1) After the construction of the Park City, the quality of forest land improved, resulting in an increase in forest carbon stock by 1.19 × 106 tons. (2) Compared to the scenario without Park City construction, the implementation of the Park City led to a total carbon stock increase of 3.75 × 105 tons, with forest carbon stock increasing by 7.48 × 105 tons. (3) The PCS is the most conducive to achieving the carbon peaking and carbon neutrality goals, with the highest carbon stock. (4) Carbon stock is mainly driven by socio-economic factors. Land use/land cover (LULC) has the greatest explanatory power, with a q value of 0.9. The Park City is of great significance for an increase in carbon stock in Chengdu.

Funder

Humanities and Social Sciences Project of the Ministry of Education of the Peoples Republic

National Natural Science Foundation of China

Science and Technology Project of Sichuan Province

Basic Application Research Project of Science and Technology Department of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3