Author:
Yang Jingli,Yin Shuangyan,Chang Yongqi,Gao Tianyu
Abstract
Aiming at the fault diagnosis issue of rotating machinery, a novel method based on the deep learning theory is presented in this paper. By combining one-dimensional convolutional neural networks (1D-CNN) with self-normalizing neural networks (SNN), the proposed method can achieve high fault identification accuracy in a simple and compact architecture configuration. By taking advantage of the self-normalizing properties of the activation function SeLU, the stability and convergence of the fault diagnosis model are maintained. By introducing α -dropout mechanism twice to regularize the training process, the overfitting problem is resolved and the generalization capability of the model is further improved. The experimental results on the benchmark dataset show that the proposed method possesses high fault identification accuracy and excellent cross-load fault diagnosis capability.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献