Automated Georectification, Mosaicking and 3D Point Cloud Generation Using UAV-Based Hyperspectral Imagery Observed by Line Scanner Imaging Sensors

Author:

Finn Anthony1ORCID,Peters Stefan1ORCID,Kumar Pankaj1,O’Hehir Jim1

Affiliation:

1. Science Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia

Abstract

Hyperspectral sensors mounted on unmanned aerial vehicles (UAV) offer the prospect of high-resolution multi-temporal spectral analysis for a range of remote-sensing applications. However, although accurate onboard navigation sensors track the moment-to-moment pose of the UAV in flight, geometric distortions are introduced into the scanned data sets. Consequently, considerable time-consuming (user/manual) post-processing rectification effort is generally required to retrieve geometrically accurate mosaics of the hyperspectral data cubes. Moreover, due to the line-scan nature of many hyperspectral sensors and their intrinsic inability to exploit structure from motion (SfM), only 2D mosaics are generally created. To address this, we propose a fast, automated and computationally robust georectification and mosaicking technique that generates 3D hyperspectral point clouds. The technique first morphologically and geometrically examines (and, if possible, repairs) poorly constructed individual hyperspectral cubes before aligning these cubes into swaths. The luminance of each individual cube is estimated and normalised, prior to being integrated into a swath of images. The hyperspectral swaths are co-registered to a targeted element of a luminance-normalised orthomosaic obtained using a standard red–green–blue (RGB) camera and SfM. To avoid computationally intensive image processing operations such as 2D convolutions, key elements of the orthomosaic are identified using pixel masks, pixel index manipulation and nearest neighbour searches. Maximally stable extremal regions (MSER) and speeded-up robust feature (SURF) extraction are then combined with maximum likelihood sample consensus (MLESAC) feature matching to generate the best geometric transformation model for each swath. This geometrically transforms and merges individual pushbroom scanlines into a single spatially continuous hyperspectral mosaic; and this georectified 2D hyperspectral mosaic is then converted into a 3D hyperspectral point cloud by aligning the hyperspectral mosaic with the RGB point cloud used to create the orthomosaic obtained using SfM. A high spatial accuracy is demonstrated. Hyperspectral mosaics with a 5 cm spatial resolution were mosaicked with root mean square positional accuracies of 0.42 m. The technique was tested on five scenes comprising two types of landscape. The entire process, which is coded in MATLAB, takes around twenty minutes to process data sets covering around 30 Ha at a 5 cm resolution on a laptop with 32 GB RAM and an Intel® Core i7-8850H CPU running at 2.60 GHz.

Funder

National Forest Infrastructure & Products Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Accurate Crop Health Information Through Hyper Spectral Image Analysis;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3