Boosting SAR Aircraft Detection Performance with Multi-Stage Domain Adaptation Training

Author:

Yu Wenbo12ORCID,Li Jiamu12,Wang Zijian12,Yu Zhongjun12ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Deep learning has achieved significant success in various synthetic aperture radar (SAR) imagery interpretation tasks. However, automatic aircraft detection is still challenging due to the high labeling cost and limited data quantity. To address this issue, we propose a multi-stage domain adaptation training framework to efficiently transfer the knowledge from optical imagery and boost SAR aircraft detection performance. To overcome the significant domain discrepancy between optical and SAR images, the training process can be divided into three stages: image translation, domain adaptive pretraining, and domain adaptive finetuning. First, CycleGAN is used to translate optical images into SAR-style images and reduce global-level image divergence. Next, we propose multilayer feature alignment to further reduce the local-level feature distribution distance. By applying domain adversarial learning in both the pretrain and finetune stages, the detector can learn to extract domain-invariant features that are beneficial to the learning of generic aircraft characteristics. To evaluate the proposed method, extensive experiments were conducted on a self-built SAR aircraft detection dataset. The results indicate that by using the proposed training framework, the average precision of Faster RCNN gained an increase of 2.4, and that of YOLOv3 was improved by 2.6, which outperformed other domain adaptation methods. By reducing the domain discrepancy between optical and SAR in three progressive stages, the proposed method can effectively mitigate the domain shift, thereby enhancing the efficiency of knowledge transfer. It greatly improves the detection performance of aircraft and offers an effective approach to address the limited training data problem of SAR aircraft detection.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3