Novel Land Cover Change Detection Deep Learning Framework with Very Small Initial Samples Using Heterogeneous Remote Sensing Images

Author:

Zhu Yangpeng1,Li Qianyu1,Lv Zhiyong2,Falco Nicola3ORCID

Affiliation:

1. School of Economics and Management, Xi’an Shiyou University, Xi’an 710065, China

2. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

3. Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

Change detection with heterogeneous remote sensing images (Hete-CD) plays a significant role in practical applications, particularly in cases where homogenous remote sensing images are unavailable. However, directly comparing bitemporal heterogeneous remote sensing images (HRSIs) to measure the change magnitude is unfeasible. Numerous deep learning methods require substantial samples to train the module adequately. Moreover, the process of labeling a large number of samples for land cover change detection using HRSIs is time-consuming and labor-intensive. Consequently, deep learning networks face challenges in achieving satisfactory performance in Hete-CD due to the limited number of training samples. This study proposes a novel deep-learning framework for Hete-CD to achieve satisfactory performance even with a limited number of initial samples. We developed a multiscale network with a selected kernel-attention module. This design allows us to effectively capture different change targets characterized by diverse sizes and shapes. In addition, a simple yet effective non-parameter sample-enhanced algorithm that utilizes the Pearson correlation coefficient is proposed to explore the potential samples surrounding every initial sample. The proposed network and sample-enhanced algorithm are integrated into an iterative framework to improve change detection performance with a limited number of small samples. The experimental results were achieved based on four pairs of real HRSIs, which were acquired with Landsat-5, Radarsat-2, and Sentinel-2 satellites with optical and SAR sensors. Results indicated that the proposed framework could achieve competitive accuracy with a small number of samples compared with some state-of-the-art methods, including three traditional methods and nine state-of-the-art deep learning methods. For example, the improvement rates are approximately 3.38% and 1.99% compared with the selected traditional methods and deep learning methods, respectively.

Funder

Shaanxi Provincial Department of Science and Technology Fund Project “Shaanxi Provincial Innovation Capability Support Program”

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3