UniRender: Reconstructing 3D Surfaces from Aerial Images with a Unified Rendering Scheme

Author:

Yan Yiming12ORCID,Zhou Weikun12,Su Nan12ORCID,Zhang Chi12ORCID

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China

Abstract

While recent advances in the field of neural rendering have shown impressive 3D reconstruction performance, it is still a challenge to accurately capture the appearance and geometry of a scene by using neural rendering, especially for remote sensing scenes. This is because both rendering methods, i.e., surface rendering and volume rendering, have their own limitations. Furthermore, when neural rendering is applied to remote sensing scenes, the view sparsity and content complexity that characterize these scenes will severely hinder its performance. In this work, we aim to address these challenges and to make neural rendering techniques available for 3D reconstruction in remote sensing environments. To achieve this, we propose a novel 3D surface reconstruction method called UniRender. UniRender offers three improvements in locating an accurate 3D surface by using neural rendering: (1) unifying surface and volume rendering by employing their strengths while discarding their weaknesses, which enables accurate 3D surface position localization in a coarse-to-fine manner; (2) incorporating photometric consistency constraints during rendering, and utilizing the points reconstructed by structure from motion (SFM) or multi-view stereo (MVS), to constrain reconstructed surfaces, which significantly improves the accuracy of 3D reconstruction; (3) improving the sampling strategy by locating sampling points in the foreground regions where the surface needs to be reconstructed, thus obtaining better detail in the reconstruction results. Extensive experiments demonstrate that UniRender can reconstruct high-quality 3D surfaces in various remote sensing scenes.

Funder

National Natural Science Foundation of China

Heilongjiang Outstanding Youth Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3