A Dynamic Distributed Deterministic Load-Balancer for Decentralized Hierarchical Infrastructures

Author:

Sioutas SpyrosORCID,Sourla EfrosiniORCID,Tsichlas Kostas,Vonitsanos Gerasimos,Zaroliagis ChristosORCID

Abstract

In this work, we propose D3-Tree, a dynamic distributed deterministic structure for data management in decentralized networks, by engineering and extending an existing decentralized structure. Conducting an extensive experimental study, we verify that the implemented structure outperforms other well-known hierarchical tree-based structures since it provides better complexities regarding load-balancing operations. More specifically, the structure achieves an O(logN) amortized bound (N is the number of nodes present in the network), using an efficient deterministic load-balancing mechanism, which is general enough to be applied to other hierarchical tree-based structures. Moreover, our structure achieves O(logN) worst-case search performance. Last but not least, we investigate the structure’s fault tolerance, which hasn’t been sufficiently tackled in previous work, both theoretically and through rigorous experimentation. We prove that D3-Tree is highly fault-tolerant and achieves O(logN) amortized search cost under massive node failures, accompanied by a significant success rate. Afterwards, by incorporating this novel balancing scheme into the ART (Autonomous Range Tree) structure, we go one step further to achieve sub-logarithmic complexity and propose the ART+ structure. ART+ achieves an O(logb2logN) communication cost for query and update operations (b is a double-exponentially power of 2 and N is the total number of nodes). Moreover, ART+ is a fully dynamic and fault-tolerant structure, which supports the join/leave node operations in O(loglogN) expected WHP (with high proability) number of hops and performs load-balancing in O(loglogN) amortized cost.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference29 articles.

1. Principles of Distributed Database Systems;Ozsu,2011

2. Load Balancing and Range Queries in P2P Systems Using P-Ring

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3