Design of Selective Laser Melting (SLM) Structures: Consideration of Different Material Properties in Multiple Surface Layers Resulting from the Manufacturing in a Topology Optimization

Author:

Holoch Jan,Lenhardt Sven,Revfi Sven,Albers Albert

Abstract

Topology optimization offers a possibility to derive load-compliant structures. These structures tend to be complex, and conventional manufacturing offers only limited possibilities for their production. Additive manufacturing provides a remedy due to its high design freedom. However, this type of manufacturing can cause areas of different material properties in the final part. For example, in selective laser melting, three areas of different porosity can occur depending on the process parameters, the geometry of the part and the print direction, resulting in a direct interrelation between manufacturing and design. In order to address this interrelation in design finding, this contribution presents an optimization method in which the three porous areas are identified and the associated material properties are considered iteratively in a topology optimization. For this purpose, the topology optimization is interrupted in each iteration. Afterwards, the three areas as well as the material properties are determined and transferred back to the topology optimization, whereby those properties are used for the calculation of the next iteration. By using the optimization method, a design with increased volume-specific stiffness compared to a design of a standard topology optimization can be created and will be used in the future as a basis for the extension by a global strength constraint to maintain the maximum permissible stress and the minimum wall thickness.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference33 articles.

1. Systemleichtbau-ganzheitliche Gewichtsreduzierung;Albers,2020

2. Topology Optimization;Bendsøe,2004

3. Optimal shape design as a material distribution problem

4. SIMULIA User Assistance 2017: Controller-Versus Sensitivity-Based Topology Optimizationhttps://abaqus-docs.mit.edu/2017/English/TsoUserMap/tso-c-user-TopOpt-OptTask-ContrVSSens.htm

5. The method of moving asymptotes—a new method for structural optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3