Variation of Physico-Chemical Properties among Different Soil Orders under Different Land Use Systems of the Majha Region in North-Western India

Author:

Gowthamchand 1,Dhaliwal Salwinder Singh1ORCID,Sharma Vivek1ORCID,Verma Gayatri2,Singh Jagdish2ORCID,Kaur Manpreet3ORCID

Affiliation:

1. Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India

2. Regional Research Station, Punjab Agricultural University, Gurdaspur 143521, India

3. Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India

Abstract

The impact of different soil orders and land use systems on the distribution of physico-chemical properties is the most critical matter to address in order to maintain sustainable agricultural production. Hence, the present investigation was carried out to study the variation in the physico-chemical characteristics of soil in diverse land use systems (LUSs), i.e., agriculture, horticulture, and forestry, under major soil orders (entisol, inceptisol, and alfisol) in the Majha region of Punjab. A total of 225 depth-wise (at 0–20 cm, 20–40 cm, 40–60 cm, 60–80 cm and 80–100 cm) soil samples were collected from three land-use systems under different soil orders. The mean values of the physico-chemical properties ranged from 6.80–7.50, 7.64–8.34 and 6.94–7.87 for pH; 0.13–0.42, 0.19–0.54 and 0.19–0.46 dS m−1 for EC; 0.14–0.99, 0.21–0.69 and 0.15–0.72% for OC; 0.75–2.07, 1.07–3.32 and 0.93–2.29% for CaCO3; 7.77–41.84, 10.56–40.23 and 7.24–39.51 kg ha−1 for P; and 98.37–334.68, 94.51–230.18 and 93.01–367.39 kg ha−1 for K under different land uses in soil orders entisols, inceptisols and alfisols, respectively. Soil parameters including pH, CaCO3, and phosphorus (P) distribution differed significantly among soil orders; however, soil EC, organic carbon (OC) and available potassium (K) did not. The inceptisols under the agricultural land use system (ALUS) had the highest soil pH, EC, and CaCO3 values. The highest soil OC content was found in entisols under forest land use systems (FLUS), followed by horticultural land use systems (HLUS). The highest values of soil-available phosphorous (P) were found in FLUS under inceptisols, while the highest amounts of soil-available potassium (K) were found in entisols and alfisols under ALUS and FLUS, respectively. Thus, the distribution of physico-chemical properties under different LUSs in each soil order is highly variable and does not follow any particular trend. In general, soil properties such as OC, P, and K content decreased with an increase in soil depth, while pH and CaCO3 values increased with depth in all land uses and soil orders. There was a positive correlation between soil OC and EC, as well as available P and K in the soils investigated. The available P and K are negatively correlated with soil pH and CaCO3 content in the soil. The principal component analysis (PCA) revealed that soil pH and OC were the most variable soil parameters, which influence the availability of other physico-chemical properties under different soil orders and land use systems. Therefore, it is suggested that the land use systems play an important role in the distribution of physico-chemical properties of soil in different soil orders. The results of the study will help students, researchers, and agricultural management staff in managing different land uses for maintaining soil fertility and productivity in alluvial soils of North-western India.

Funder

Punjab Agricultural University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference45 articles.

1. Monitoring Land-Use Change in the Pearl River Delta using Landsat TM;Seto;Int. J. Remote Sens.,2002

2. Changes in Carbon, N and P Levels due to Deforestation and Cultivation: A Case Study in Simplipal National Park of India;Saikh;Plant Soil,1998

3. Effects of N Fertilization of Grape Fruit Trees on Soil Acidification and Nutrient Availability in a Riviera Fine Sand;He;Plant Soil,1999

4. Turner, B.L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., and Leemans, R. (1995). Land-Use and Land-Cover Change: Science/Research Plan, Arizona State University.

5. Impact of Land Use and Management Practice on Chemical Properties of Some Soils of Bako Area, Western Ethiopia;Heluf;Ethiop. J. Nat. Resour.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3