Pumping-Induced Feed Water Quality Variation and Its Impacts on the Sustainable Operation of a Brackish Water Reverse Osmosis Desalination Plant, City of Hialeah, Florida, USA

Author:

Kassis Zoie R.1,Guo Weixing2,Maliva Robert G.3,Manahan W. Scott3,Rotz Rachel4,Missimer Thomas M.5ORCID

Affiliation:

1. Department of Biomedical, Environmental and Civil Engineering, U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA

2. Groundwater Teck Inc., 14542 Indigo Lakes Circle, Naples, FL 34119, USA

3. WSP USA, Inc., 1567 Hayley Lane, Suite 202, Fort Myers, FL 33907, USA

4. Department of Marine and Earth Sciences, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA

5. U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA

Abstract

Brackish water reverse osmosis (BWRO) desalination of groundwater is believed to be a sustainable method of providing municipal utilities with a high-quality supply in regions where freshwater sources are stressed and not sustainable. A key aspect of water management is the ability to evaluate an aquifer containing brackish water to ascertain future pumping-induced water quality changes and their impacts on the facility operation and economics. The city of Hialeah, Florida, has operated a BWRO facility for the last 9 years. The facility has a maximum design capacity of about 88,000 m3/d but is currently operating at about 33,000 m3/d. The facility was designed to treat water with a TDS of up to 10,000 mg/L. A detailed hydrogeologic investigation, including groundwater solute-transport modeling, suggested that the salinity of the source water would remain under 10,000 mg/L of TDS during the 30-year life expectancy of the facility. However, after 9 years of operation, it was found that the rate of salinity increase was much higher than predicted (27.5%), at the low rate of 33,000 m3/d. If the faculty was operated at the maximum capacity, the ability of the plant to treat the source water might be between 5 and 10 years. The conceptual model used to guide the solute transport modeling was not accurate for this site because it did not incorporate the apparent enhanced leakance through the basal confining unit below the aquifer. The greater leakance was likely caused by undetected, irregularly distributed fracturing of the underlying confining dolostones. The facility will require a major redesign to upgrade the process to be able to treat seawater at a TDS significantly above 10,000 mg/L in the future, should that occur. While the change will be costly, with a high capital cost to change the process, increased energy consumption, and overall higher water treatment cost, it is still more sustainable and has less environmental impact compared to other alternatives (e.g., treating tidal sources of seawater). The use of electricity from nuclear or solar generation could mitigate the environmental impacts of higher power consumption.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference37 articles.

1. Four billion people facing severe water scarcity;Mekonnen;Sci. Adv.,2016

2. Stanton, J.S., Anning, D.W., Brown, C.J., Moore, R.B., McQuire, V.L., Qi, S.L., Harris, A.C., Dennehy, K.F., McMahon, P.B., and Degnan, J.R. (2017). Brackish Groundwater in the United States, US Department of the Interior. US Geological Survey Professional Paper 1833.

3. Missimer, T.M., Maliva, R.G., and Watson, I. (December, January 30). Brackish-water desalination in Florida: Is the feed water from the Floridan Aquifer System a sustainable resource. Proceedings of the Florida Section of the American Water Works Association Annual Meeting, Orlando, FL, USA.

4. Missimer, T.M. (2009). Water Supply Development, Aquifer Storage, and Concentrate Disposal for Membrane Water Treatment Facilities, Schlumberger Limited. [2nd ed.].

5. Simulations of BWRO systems under different feedwater characteristics. Analysis of operation windows and optimal operating points;Nuez;Desalination,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3