A Comprehensive In Situ Investigation on the Reinforcement of High-Filled Red Soil Using the Dynamic Compaction Method

Author:

Wang Lei12,Du Fenglei34ORCID,Liang Yonghui5,Gao Wensheng4,Zhang Guangzhe4,Sheng Zhiqiang4,Chen Xiangsheng12ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

2. Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

3. School of Civil Engineering, Tsinghua University, Beijing 100084, China

4. Institute of Foundation Research, China Academy of Building Research, Beijing 100013, China

5. Shanghai Shenyuan Geotechnical Engineering Co., Ltd., Shanghai 200040, China

Abstract

High-filled red soil typically lacks sufficient bearing capacity, which can pose significant challenges when constructing building foundations. One economical and effective method for the reinforcement of high-filled red soil is the dynamic compaction (DC) method. However, the design parameters for reinforcing high-filled red soil using the DC method are largely based on experience, which indicates the significant value of field results of related engineering practice. In this paper, we report a field study that was carried out to investigate the effect of impact energy on the treatment of super-high-filled ground with red soil in southwestern Yunnan, China, where three pilot DC tests were designed and conducted with three different impact energies (4000 kN·m, 8000 kN·m and 15,000 kN·m). To evaluate the reinforcement effect and optimize the DC operational parameters, a series of in situ tests, including settlement monitoring, standard penetration tests, dynamic penetration tests, surface wave velocity tests and plate-load tests, were carried out. Furthermore, the improvement depth of DC was discussed. The results of the field study show that the characteristic value of the ground bearing capacity of the three test zones could reach 250 kPa, which coincides with the design requirement, although the improvement depth of testing zone III fails to reach the required depth. This study helps to improve the in situ recycling of high-filled soil, thereby promoting the sustainable development of engineering construction.

Funder

Nature Science Foundation of Beijing, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3