Using Multitemporal Sentinel-1 C-band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland

Author:

Rüetschi Marius,Schaepman MichaelORCID,Small DavidORCID

Abstract

Efficient methods to monitor forested areas help us to better understand their processes. To date, only a few studies have assessed the usability of multitemporal synthetic aperture radar (SAR) datasets in this context. Here we present an analysis of an unprecedented set of C-band observations of mixed temperate forests. We demonstrate the potential of using multitemporal C-band VV and VH polarisation data for monitoring phenology and classifying forests in northern Switzerland. Each SAR acquisition was first radiometrically terrain corrected using digital elevation model-based image simulations of the local illuminated area. The flattened backscatter values and the local area values were input to a temporal compositing process integrating backscatter values from ascending and descending tracks. The process used local resolution weighting of each input, producing composite backscatter values that strongly mitigated terrain-induced distortions. Several descriptors were calculated to show the seasonal variation of European beech (Fagus sylvatica), oak (Quercus robur, Quercus petraea) and Norway spruce (Picea abies) in C-band data. Using their distinct seasonal signatures, the timing of leaf emergence and leaf fall of the deciduous species were estimated and compared to available ground observations. Furthermore, classifications for the forest types ‘deciduous’ and ‘coniferous’ and the investigated species were implemented using random forest classifiers. The deciduous species backscatter was about 1 dB higher than spruce throughout the year in both polarisations. The forest types showed opposing seasonal backscatter behaviours. At VH, deciduous species showed higher backscatter in winter than in summer, whereas spruce showed higher backscatter in summer than in winter. In VV, this pattern was similar for spruce, while no distinct seasonal behaviour was apparent for the deciduous species. The time differences between the estimations and the ground observations of the phenological events were approximately within the error margin ( ± 12 days) of the temporal resolution. The classification performances were promising, with higher accuracies achieved for the forest types (OA of 86% and κ = 0.73) than for individual species (OA of 72% and κ = 0.58). These results show that multitemporal C-band backscatter data have significant potential to supplement optical remote sensing data for ecological studies and mapping of mixed temperate forests.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3