Driven by Vision: Learning Navigation by Visual Localization and Trajectory Prediction

Author:

Leordeanu Marius,Paraicu Iulia

Abstract

When driving, people make decisions based on current traffic as well as their desired route. They have a mental map of known routes and are often able to navigate without needing directions. Current published self-driving models improve their performances when using additional GPS information. Here we aim to push forward self-driving research and perform route planning even in the complete absence of GPS at inference time. Our system learns to predict in real-time vehicle’s current location and future trajectory, on a known map, given only the raw video stream and the final destination. Trajectories consist of instant steering commands that depend on present traffic, as well as longer-term navigation decisions towards a specific destination. Along with our novel proposed approach to localization and navigation from visual data, we also introduce a novel large dataset in an urban environment, which consists of video and GPS streams collected with a smartphone while driving. The GPS is automatically processed to obtain supervision labels and to create an analytical representation of the traversed map. In tests, our solution outperforms published state of the art methods on visual localization and steering and provides reliable navigation assistance between any two known locations. We also show that our system can adapt to short and long-term changes in weather conditions or the structure of the urban environment. We make the entire dataset and the code publicly available.

Funder

UEFISCDI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Off-road obstacle avoidance through end-to-end learning;Muller,2006

2. End to end learning for self-driving cars;Bojarski;arXiv,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3