Three-Dimensional Empirical AoA Localization Technique for Indoor Applications

Author:

Alma’aitah AbdallahORCID,Alsaify Baha’ORCID,Bani-Hani Raed

Abstract

Small and pervasive devices have been increasingly used to identify and track objects automatically. Consequently, several low-cost localization schemes have been proposed in the literature based on angle of arrival (AoA), time difference of arrival (TDoA), received signal strength indicator (RSSI) or their combinations. In this paper, we propose a three-dimensional empirical AoA localization (TDEAL) technique for battery-powered devices. The proposed technique processes the AoA measurements at fixed reader nodes to estimate the locations of the tags. The proposed technique provides localization accuracy that mitigates non-linear empirical errors in AoA measurements. We utilize two omni-directional antenna arrays at each fixed reader node to estimate the location vector. With multiple location estimations from different fixed reader nodes, each estimated location is assigned a weight that is inversely proportional to the AoA phase-difference error. Furthermore, the actual AoA parabolic formula of the location is approximated to a cone to simplify the location calculation process. The proposed localization technique has a low hardware cost, low computational requirements, and precise location estimates. Based on the performance evaluation, significant location accuracy is achieved by TDEAL; where, for instance, an average error margin of less than 13 cm is achieved using 10 readers in an area of   10   m ×   10   m . TDEAL can be utilized to provide reference points when integrated with a relative (e.g., inertial navigation systems) localization systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3