Multiscale Analysis of Runoff Complexity in the Yanhe Watershed

Author:

Liu XintongORCID,Zhao Hongrui

Abstract

Runoff complexity is an important indicator reflecting the sustainability of a watershed ecosystem. In order to explore the multiscale characteristics of runoff complexity and analyze its variation and influencing factors in the Yanhe watershed in China during the period 1991–2020, we established a new analysis method for watershed runoff complexity based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method for the decomposition of multiscale characteristics and the refined composite multiscale entropy (RCMSE) method for the quantification of the system complexity. The results show that runoff and its components all present multiscale complexity characteristics that are different from random signals, and the intermediate frequency modes contribute the most to runoff complexity. The runoff complexity of the Yanhe watershed has decreased gradually since 1991, and 2010 was a turning point of runoff complexity, when it changed from a decline to an increase, indicating that the ecological sustainability of this basin has improved since 2010, which was mainly related to the ecological restoration measures of the Grain for Green Project. This study expands the research perspective for analyzing the variation characteristics of runoff at the multiscale, and provides a reference for the study of watershed ecological sustainability and ecological management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3