Abstract
Rényi entropy was originally introduced in the field of information theory as a parametric relaxation of Shannon (in physics, Boltzmann–Gibbs) entropy. This has also fuelled different attempts to generalise statistical mechanics, although mostly skipping the physical arguments behind this entropy and instead tending to introduce it artificially. However, as we will show, modifications to the theory of statistical mechanics are needless to see how Rényi entropy automatically arises as the average rate of change of free energy over an ensemble at different temperatures. Moreover, this notion is extended by considering distributions for isospectral, non-isothermal processes, resulting in relative versions of free energy, in which the Kullback–Leibler divergence or the relative version of Rényi entropy appear within the structure of the corrections to free energy. These generalisations of free energy recover the ordinary thermodynamic potential whenever isothermal processes are considered.
Funder
Fonds National de la Recherche
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献