Research on Thermal Runaway Characteristics of High-Capacity Lithium Iron Phosphate Batteries for Electric Vehicles

Author:

Zhu Qing1,Liang Kunfeng1,Zhou Xun1ORCID

Affiliation:

1. Vehicle and Traffic Engineering College, Henan University of Science and Technology, Luoyang 471003, China

Abstract

With the rapid development of the electric vehicle industry, the widespread utilization of lithium-ion batteries has made it imperative to address their safety issues. This paper focuses on the thermal safety concerns associated with lithium-ion batteries during usage by specifically investigating high-capacity lithium iron phosphate batteries. To this end, thermal runaway (TR) experiments were conducted to investigate the temperature characteristics on the battery surface during TR, as well as the changes in battery mass and expansion rate before and after TR. Meanwhile, by constructing a TR simulation model tailored to lithium iron phosphate batteries, an analysis was performed to explore the variations in internal material content, the proportion of heat generation from each exothermic reaction, and the influence of the heat transfer coefficient during the TR process. The results indicate that as the heating power increases, the response time of lithium-ion batteries to TR advances. Furthermore, the heat released from the negative electrode–electrolyte reaction emerges as the primary heat source throughout the entire TR process, contributing to 63.1% of the total heat generation.

Funder

Luoyang Science and Technology Development Plan Project

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3